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I. INTRODUCTION

A. Purpbse

The pﬁrpose of this analysis is to investigate the frequency domain
characteristics and s-plane characteristics of reflecting objects and to
indicate the basic information available in these domains which should
pro;ve useful in the representation and identification of such objects.
The investigation is particularly concerned with reflecting objeci.:s which
are of interest in the radio and radar portion of the frequency sfectru.m.
It is intended that the results of this study will be used as z guide for
later experimental efforts, but the 'éxperiments themselves are beyond the

intended scope of this study.

B. Preliminary Remarks

1. Signal representation

Since the signals (both transmitted and received) to be discussed in
this analysis can be completely described in either the time or frequency
domain, the discussion will frequently switch from one domain representa-
tion to the other, the choice depending upon the domain which offers the.
clearer 'presentation. The transformstions which will be used to switch

back end forth between the two domains are the direct Fourier tré.hsfor-

mation (1, p. 100),

(o) = f £(t)e™ I at,

and the inverse Fourier transformation (1, p. 100),



>
£(t) = %; J Flw)e 9% ao .

-
Although the signals, f£(t), under analysis will be real functions of the
real variable, t, the functioms, F(w), will be complex functions of the

real variable, w. Another important transformation which will be used is

the direct Laplace transformation (1, p. 104),

oo i
o(s) =j £(t)e"St a (s =0+ jo),
oF
vhich transforms the real function, £(t), of the real variable, t, into
a complex function, G(s), of the complex variable, s. It is interesting
to note that if the real part, o, of the complex variable, s, is taken
to be zero, the s-plane is effectively replaced by the imaginary axis,
and G(s) becomes G(jcn). It should also be noted that G(jw) is identical
to F(w) providing that £(t) is zero for t < o. The signals of interest

in this discussion will be specified to be zero for t < o. Thus, 4
F(w) = 6(Jo) -

To transform from the s-plane back to the time domain, the inverse Laplace

transformation (1, p. 105) is used, i.e.,

ey
£(t) = 2%- f F(s)ve-,!'St ds .
c=j»

2. The transfer function concept
The preceding comments with regard to signal representation are

rather standard in discussions regarding electrical networks. It will



also be useful to utilize the so-called transfer-function concept which
also comes from the theory of networks. To introduce this concept, let
a linear passive electrical network be excited by an input voltage,
'ein(t) , having e Fourier transform, Ein(cb). Mso let the output voltage
be eout(t) with Fourier transform, Eout(w)' The ratio of the transformed
output to the transformed input is defined as the network transfer func-

tion, (4, p. 222) Ft(co). Thus,

40
X y_=Jjwt
E (o) j eout(t)e dt
ocuv 0
Ft(a))= = =
E. (CD) ! -j(l)t
f e, (t)e at
in
-0

‘It can be noted. immediately &t this point that

Fo() = B (@) :
when ein(t) = 5(t) ,

since the Fourier Transform of the unit imi:ulse, 5(t), is unity as shown
in Appendix A. Therefore the system transfer-function is equal to the
Fourier transform of the network output when the network is excited’*with
2 unit impulse. The output itself, (with a unit impulse as input) is
generally referred to as the "impulse response" or "impulsive response"
(4, p. 223) of the network. Clearly then, the impulsive response and
the transfer function form a Fourier-transform pair.

When using the directA Laplace transformetion, a slightly different

expression is used for the network transfer-function (9, p."157), i.e.,



o«

-st

Eout( s) ‘[ eov.fc(t)e dt
0

Gt(S) = =

Ein(s) £ ein(t)e'St dt

o

Since all the input and output functions of interest in this discussion
are zero for t < o, a simple relation exists between the two transfer
functions, namely, Ft(w)E Gt(ja._)). Also, since the Laplace transform of

a unit impulse is unity as shown in Appendix A, it follows that

Gt(s) = Eou‘b(s

when ein(t) = 3(t).

Clearly, then, Gt(s) .end the impulsive response of the network form a
Laplace transform pair. Hereafter the impulsive response of a network

will be symbolized by y(t), i.e.,

JARNS
y(t) = e (%)

when ein(’c) = 3(t).

Lt th(s)}
Ft {Ft(w)}

The advantage of the transfer function concept lies in the ability

[l

to write

Eutls) = Ep(s)e,(s)

or



Sa

Eout(w) = Ein(a))Ft(cn)

This means that once the transfer function is found either by analytical
or experimental techniques, it can be used with any arbitrary Ein(s) or

Ein(cn) to determine the corresponding Eout(s) or Eout(co)', respectively.

C. Network Response to a Modulated Carrier

Having recalled thes;e few elementary notions from the theory of net-
works, let attention now be focused on the followiiig problem: Consider

a single sinusoidal carrier signal, c(t), given by
c(t) = Cos (wct).

Let this signal, c(t), be passed through an amplitude-modulating system

vhich produces an output, s(t), given by
s(t) = m(t)Cos(cnct).

Consider further fha’c the function, zzvx(bt), is Laplace transformable with
transform, M(s). Under this hypothesis the signal, s(t), is also Laplace
transformeble. Since multiplication in the time domain gives rise to
convolution in the s domain, the transform, S(s), of s(t) is given by'
(1, p. 275): -

az+ge

S(s) = M(s) @ o(s) = 5= f‘ M( s-w)C(w)as
d -3

where the symbol, @ » 1s used to denote the convolution operation. Al-

though this may appear to be a rather formidable expression, the



Sb

evaluation of S(s) can be performed rather simply due to the simple form
of c¢(t). Rather than evaluating the convolution integral, the expres-
sion for s{t) is written with c(t) replaced by its complex exponential

form. Thus

‘ . +jo t -jo t
e % +e °©
s(t) = m(t) 5 , and

= -i-jwct -ja.)c"c.j
s(s) = [ a(t) [ te | et

0+
b [s-jow ]t z -[stjo 1t
=;'2-Jm(t)l;_s']c]dt-i-lé-\/m(t)[;Sch‘]dt
+ +
(o} 0.
= 5 M(s-jo ) + M(stjo )] .

Thus the Laplace transform of S(s) is simply expressed.
Consider now that the signal, s(t) , is applied to a linear passive
time invariant network possessing a transfer function, Gt(s)" Let the

output of this network be called r(t) with Laplace transform, R(s). Then

R(s) = Gt(s)S(s)

()
2

[M(s-jwc) + M( s+ja>c)] .

[y

Now, r(t) = L-l [R(s)] = %L-l FGt(s)M(s-jwc) +.Gt(s)M(s+jwc)] ‘

thus



r(t) = % {L’l [Gt(s)M(s-jwc)] + 1t [Gt(s)M(s-!-jaoc)]} .

Now according to a basic theorem (1, p. 245) in Laplace transform theory,
r(t) can be written '

: +jot C -jot
r(t) = -]-2‘- {L‘l[Gt(sﬂwc)M(s)]e e + L']'.[Gt(.s-jaoc)M(s)]e Pe } .

Now let Gt(s+jwc) = H(s) and let Gt(s-jcnc) = F(s).

Then L-l[G(s+ja>c)M(s)]’ = L-l[H(s)Mts)] ‘= L’l[i-I(s)H(s)] B
and

.L‘ltc(s-jac)m(s)] = 7 MF(s)M(3)] = L‘ltm(s)é(s)] i
However,
t
[

(o]

1., .
L IM(s)a(s)] = n{t-7)h(1)aT,

: -1 La - T
vhere h(t) = L [H(s)] = L [Gt(s-i-jwc)] = g(7)e
and f£(t) = L‘l[F(s)] = L'l[Gt(s-jmc)] = g(1)e e

Thus,

E o
v e (stam M(s)] = [ mle-rde(me © e,

o
and,

t .
+j0 T
L-l[Gt(s-jmc)M(s)] = fm(t--r)g(-c)e e az .
(o]

However,



-,jwc'r
e = Cos a)c'l'-j Sin a)c‘l‘,

+,ja>c1'
and e = Cos cnc'r+j Sin wc‘r .

Consequently,
¢ | o |
: L-l[Gt(s+jmc)I~i(s)] =fm(t-'r)g(‘r)Cos(wc'r)d'r - jj m('l:-'r)g('r)Sin(wc'r)d"r
o o
and
k :
L-l[Gt(s-jcnc)M(s)] =J m(‘b-T)g(T)Cos(a}cT)dT + Jm(t-r)g(r)sm(wcr)dr.
o o
x
Now, letu/. m(t-7)g(T) Co's(wc‘r)d‘r =D, (t) ,
e
° .
x
and let -J m(t-'r)g('r)Sin(wcT)dT = q, (¢).
c
)
Then,

L Gy (sro ()] = B, (8) + g, (¢)
and L-l[Gt(s-jwc)M(s)]—- pwc(t) - quc(t).

Conséquently, the previously established equation

' +30 t ' ' -jo t
2(t) = 3 {L-l[Gt(s-!-jwc)M(s)]e  + 1Me (s-30 M(s)le Tty

can be written as



. +3im & =im t>
() = 5 {ln, (8] + 39, (8)]e * © [z, (8) - g, (e)le " © S
' jo t -jo t Jo t =jo t
= L1{lag, (8)e” © - gg, (8e  C14lp, (t) Cxp (8)e 1}
C C c c

,jaoct -jwct ‘, [ jwct -jwct
e - e Nz e + e
or, r(t) = -q (%) [ . J + 1 (t)
c 3 _

= pmc(t) Cos ® % - qwc(t) Sin cnct

Re {[pwc(t) + jqwc(t)] [Cos w t + j Sin mct]} _

. o t i) ot
‘Re{[ch(t) + quc(t)] e c} = Re gawc(t)e e © }

j[wct + ¢(t)]}

Re § 2 (1)e = 2, (8) 0os [a + 4, ()]

Thus

r(t) = &, (t) Cos [a)ct + ¢m (t)] .
c (

vhere . a.mc(t) = -\/[pwc(t)]z + [qmc(t)]2

q,, (%)
and g, () = ten™ {ﬁﬂ'] )

¢ c
It is thus observed that the final form for the network output signal,
r(t), ‘is a com'pletely general expression for a modulated sine wave in
| that it allows for both amplitude modulation and phase ﬁadulatioh. ‘No’ce

also that the amplitude-modulating function and the phase-modulating



function are dependent upon the wvalue of the carrier wc , i.e., the posi-
tion that the spectral carrier occupies in the w spectrum. This depend-

ence is symbolized by the use of the @, subscripts.

D. Reflecting Object Response to a Modulated Carrier

Now, consider a somewhat similar situation in which a transmitting
radar is-used to illuminate a reflécting object and a radar receiver is
used to collect the reflected return. Let the transmitted signal, s(t),
be an amplitude-modulated sinusoidel carrier and let the_ transmitter be

initially turned on at the time t = o. Then s(t) can be expresséé. as:

m(t) Cos w t>o0

= Q0 t<0,

vhere m(t) is the smplitude modulating function and is the angular
velocity of the sinusoidal carrier. This form of s(t) is sufficiently
general to permit c-w (continuous-wave) operZtion since m(t) can be a
step function or an extremely wide (long-duration) pulse. The trans-
mitted signel is represented in the frequency domain by its amplitude
spectrum and its phase spectrum. Let this complex spectral represen-

tation be called S(w). Then

T et 38 (w)
s(w) =f s(t)e o = lS(m)|e+J¢s @

vhere |S(w)| represents the amplitude distribution and ¢ s(cn) represents
the phase distribution. After the transmitted signal, s(t), strikes the

reflecting object, a return signal, r(t), will be reflected back. This



10

signal can also be expressed in the frequency domain. Thus,

400

. -;(Dt- . . )
R(w) =f r(t)e ’ it = iR’(a))I_e+J¢R(w .
~ r+ja)c‘t ;jwct

Now s(t) = m(%)Cos @t = m(t) }.e ; < ] , and
: B ot
Flm(t)] = M(w) ==f m(t)e ’ it ,

e - jast
also Fls(t)] = s(w) =J s(t)e at

+» . +jo t -ja)ct” et
=fm(t)[e c_;e :)eJ dt

+f° X -j[w.a) ]t .po -J[CDHD ]t
'=J'E¥-e € dt+f%ﬁe ¢ at-

| Ma) W)

5t T3 - 50,

S(w) =

NI

[M(w-a)c) + M(wi-wc)] .

Although M(®) is a function which is exactly defined for all values of ®

from -» to +*, it can be replaced in a pra.cticé.l (band-limited) modula‘p-

-

A L.
ing system by a truncated function M(w) which is defined as:

Mw) = M(w) lo| < W

M) = o {o] > w.
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‘In this definition the module.“cing system bandpass is assumed to be con-
fined to the region |o| <W. A typical [#(w)| aistribution is shown in
Figure 1.

If one considers the transmitted signal to be m(t)Cos @ t where a(t)
is the inverse Fourier transform of ﬁ(cn) , the Fourier transform, S(w), of

the transmitted signal becomes
, A
S(w) = % [M(a)-a)c) + ﬁ(cm-wc)] .

A plot of |S(w)| is shown in Figure 2. Note that both |[M(w)| and |S(w)]
are even functions. This is a characteristic of Fourier transforms of
real variables as shown in Appendix B.

The illuminstion of the ¢bject by the transmitted signal can be
thought of as a composite of individual sinusoidal illuminations, i.e.,
each of the spectral components of S(w) can be thought of as illuminating
the object separately. Each of these spectral components is then given
its own (but not.necessa.rily unique) perticular phase shift and attenua-
tion. As a result of this, the spectrum of the return signal differs
from that of the transmitted signal. Although the distribution of |S(w)]
is cymmetrical in the wvicinity of ‘Hbc and @, the distribution of‘ |R(a>)|
will not have these symmetrical propertieé in general. In those specigl
cases where the distributions of |R(w)| are symmetrical in the vicinity
of +w_, the return signal, r(t), [which is the inverse Fourier transform
of R(a))] will be expressible as a simple amplitude-modulated carrier, i.e.,

r(t) = &, (t)Co.s(wct + ¢a) ),
c c



Y

-V | +W

. . |
Figure 1. A typleal |M(w)]| distribution

ct



X 'IS(w_)'

a)c -W

Figure 2. A typical |S(w)| aistribution

et
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vhere a  {t) does not equel m(t) in general, and Am is the phase shift
of the s;ectral line carrier, w, . ¢

The general case, however, is illustrated in Figure 3; note that the
distribution of |R(w)| is not symmetrical in the vicinity of +w . Note,
also, the evenness of |[R(w)|. Because of the dissymmetry around 10,
r(t) cannot be expressed as a simple amplitude-modulated carrier. In-
stead ifs éxpression requires a phase-modulation term as well as en empli-
tude-modulation term (3, p. 168), i.e.,

r(t) = 2, (t)Cos [wct + ¢’w (€)1 .
C , (o]

Note that in this expression the amplitude-modulating function and the
phase-modulating function have GE subscripts. To understand the need for
these‘subscripts, it is necessary to reéall that for any particular @, 5
the transmitted-signal spectrum consists of the modulating spectrum dis-
tributed épout o, as shown in Figure 2. Increasing @, shifts the dis-
tributed spectrgm ewey from the zero frequency axis and decreasing @,
shifts the spectrum toward it. Thus the spectrél components of a trans-
mitted signal having a large w, value (although having the same relative
distribution ebout the center frequency) lie considersbly further away
from the zero frequency axis than those of a transmitited signal having
a low R velue. Thus, since the position of a spectral line on the fre-
quency axis determines the amount of attenuation and phasé shift that
the line will undergo when reflected from a particular target, it is

clear that the high group of transmitted frequencies will undergo a 4dif-

ferent operational process than the low groﬁp. This is illustrated in



IR(w)|

- +W W =W
c _ c

Figure 3. A typical |R(w)| distribution

ay +W
c

ST
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Figure 4.

Thus the value of the carrier frequency of a transmitted signal, in
so far as it is responsible for the position of the spectral lines of
the transmitted signal, is indirectly responsible for the operation that
the lines undergo and for the resulting distribution, R(w), in ampli-
tude and phase of the returﬁed signal components. Now the distribution
of the returned spectral lines about the center fregquency is. a composite
distribution vhich can be thought of as being composed of two component
parts. One component can be associated with an amplitude-modulating
function, a(t), and fhe other can be associated ﬁith-a phase-moduiating
function, #(t). Since the total composite distribution is dependent up-
.on the original carrier, the compoﬁent distributioné will also be de-
pendent upon the carrier. Since a(t) and g(t) each correspond to the
component distributions, they, too, are dependent upbn the original car-
rier. Therefore, the need for the w_ subscripts on a (t) and ém (£)
is established. It should be noted in passing that incspite of tge fact
that an amplitude-modulated function and a phase-modulated function are
needed td descfibe the return signal, the same frequency componénts which
exist in the transmittéd spectrum also exist in the received spectrum;
frequencies are neither created nor destroyed by the stationary target
reflection process.

Becausé of this relatively simple difference between the frequency
domain characteristics of the transmitted and refiected signals, and be-
cause the reflected signal has the same form as one emerging from an |

electrical network, namely



!-8

- =W -a)c +W o w =W w +W
¢ 1 ¢ ¢

a. Distribution of |R(w)| with low carrier transmission

W

- +W ' o . ®, W b)c +V
Co . 2

b. Distribution of |R(w)| with high carrier transmission

Figure 4. [Effects of carrier frequency on |R(a>)| distributions

2 .

'8

Q9T
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r(t) = & (t)Cos [w_ct + 4, ()1,
(o] [

it seems quite reasonable to think of the stationary target as possessing
a complex reflection-function,. Ft(a)) » similar in character to a network
transfer-function.

Although useful insight is gained by noting that both reflecting ob-
Jjects and linear passive electrical networks give rise to return (or out-
' put) signa.]:s 'which have the form |

- z(t) = a, (t)Cos [wct + 4, (&)1,

the real a.rgumenf for attributing a complex reflection-function, Ft(w) , to
a reflecting object rests entirely upon the fact that the spectral charac-
ter of the reflected signal differs in a rather special way from the spec-
tral character of the “gransmittéd signal. To examine this spectral modi-
fication fully, it is only necessary to consider that the illumination

spectrum, S(w), is entirely flat (i.é., constant) throughout the w-domain
and that S(o) has a zero phase-angle at each point in the @-domein. Stat-

ing this mathematically
S(w)= 1

Now when each of the spectral components of S(w) strikes the reflect-
ing ob'-jéctuit will undérgo a certain (but not necessarily unique) amount
of attenuation a.ndv phgée shifting in the reflection process. The reflect-
ed signal, R(w), [for S(w) = 1] is therefore an exact measure of the

spectral -modification property of the reflecting object. This measure will .
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be defined as the complex reflection-function of the object, i.e.,

AN
Ft(aa) = R(w)

S(w) =1

By taking the inverse Fourier ti‘ansform, the impulsive response, y(t), of

the reflecting object is obtained. Thus

y(&) £ fr (@] =FT (R(a)
S(e) =1
or, |

() & (%)

| s(t) = 5(%)

vhere 8(t) is a unit impulse centered at t = o. The term special wey 1is
used in the above argument to mean that the'target’s reflecting character
has a linear behavior, i.e., that the principal of superposition applies
to the attenuation property at every point in the w-domain and that the
.pha.se shifting property is not dependent upon the "strength" (i.e., the
amplitude) of the illumination signal. ' | |

By deflnmg Ft(a)) and y(t) successively in the manner outlined above,
it is possible to go one step further and define an equivalent network -
transfer-function, G, (s), which can be used to represent ‘the reflecting ob-

ject. Such a transfer function will be defined here in the following way:
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G, (s) £ Lly(t)]

The utility of this transfer function will be explained later. Let it
suffice to say at this point that it will be'found wo%thwhile to think of
the stationary target in termsvof an equivelent network which operates on
the spectral components of any given s(t) in such a w#y as to yield the
spectral components of r(t). Of course the impulsive response of'the net-
work and its Fourier transform are identical, respectivel&, to the impul-
sive response of the reflecting object and its Fourier tfanéform. For this
reason the same symbols, namely y(t) and Ft(w), will be used interchange-
ably to represent both the reflection process of the reflecting object and
the transfer process of the equivalent network. Similarly the s-domain
function, Gt(s),.will be used to characterise both the reflecting object
and its network equivalent. To carry this one step further, the terms re-
flection function and transfer function will be uséd interchangestly in the
discussion which follows because of the equivalence which has been establish-
ed above.

The real value of describing a target in terms of a reflection function
is obvious in terms of the simple relation which exists between input and

output in the frequency domain and in the s-plane, i.e.,

R(w) = S(w)Ft(cb)
énd |
R(s) = 5(s)6,(s) = 5 [M(s-ju ) + M(stjo )] G, (s)
This relationship shows that once Ft(w) or Gt(s) is determined for a par-

ticular terget, either by analytical or experimental technique, it can be
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used with many different S(s) or S(w) distributions to determine the cor;-
responding R(s) or R(w) distributions, respectively, without the need for
further experiment or messurement. Without such an expression relating.
general inputs to corresponding output:; > an experiment would have to be
verformed for each specific input and target combination in order to ob-
tain a .éorrespo.rxding output. At this point, one might naturally ask if it
is possible to obtain the féflection function of an arbitrary object by |
purely analytical techniques. The a.ﬁswer to this questioﬁ in general is.
yes since it can be obtained, at leasf in principle, by considering =a

" plene electromagnetic wave to impinge upon an object of interest and by
solving the corresponding bounda.fy value problem. However, the analytic
difficulties (5, p. 453) encountered have pfevented such solutions except
for objects of rather simple geome‘i:ry. -It is therefore necessary to in-
vestigate methods for the experimental determination of reflection func-
tions. It should be mentibned, hcé:ever, that the analytical solutions
which have been ébtained for specific and simple '»geométries are soméwhat
useful in general since these results can be used to gtiide future measure-
ment techniques. It is hoped in turn that information collected by experi-
ment will be helpful in aiding future analytical solutions. More will be :
said about this later. The object at this point is simply to present in a

developmental manner useful experimental methods.

E. Measurement of Stationary
Target Transfer Function

Inspection of the second equation on page 19 shows that R(s) would be

equal to G(s) if % IM( s-jwc) + M(s+ja>c)] were equel to unity. ' There is at



least one modulation function, m(t), namely the unit impulse, &(t), for
which this condition is satisfied. As shown in Appendix A, the Laplace
transform of the unit impulse is unity, so if m(t) = 3(t), M(s) = 1 =
M( stjm(‘:). With this reasoning it Ais apparent that if the cafrier were
modulated by a unit impulse the return signal, s(t) ,‘ would be the inverse
Laplace transform of the target transfer-function, Gt(s). Such modulation
would therefore provide a means for the direct measurement of the target
transfer-function. Two immediate:shortcomings are ai)parent however. First,
if modulation with a unit impulse were actually possible, the .carrier,
Cos(wc't) , would be sampled just once (at its maximum vé.lue) , and the car-
rier, as such, would not be transmitted. Thus, the system would‘not be
taking‘ advantage of the r-f (radio-frequency) carrier principle. The sec-
ond difficulty lies in the mposs:.blllty of generating a.true unit impulse.
The closest thing to a unit impulse is a pulse of extremely narrow width
and extremely large amplitude. If such a pulse were used as a modulating
function, advantage would be taken of the carrier principlé.' Y’ZEhus , from
an intuitive viewpoint a short-pulse system seems appropriaté. To ,justi-:
Ly this noti;Jn analytically, it is necessary to determine the Laplace
’c;;:'ansfom of a pulse type modulating function. This trapsform, obtained
in Appendix A, is expressed as
-as
P(s) = [].'—'—a:—‘—] vhere " % " is the impulse emplitude and "a"
is the pulse width. .

Since R(s) = % {M(s-jwc) + M(s+jc1>c)] Gt(s) ,

-
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it is clear that, with M(s) = P(s),

-a( s-jwc) ~a( sHjw, )]

1 l-e l-e
R(s) = 52 + Gt(s)
s=Jjw s+jw
. c c ’ .
- =g s-,jwc) -a( s+, )
G.(s) (|1-e (stjw ) + |l-e (s-jw_ )
= t g c c )2
2a 82 + o 2 .
c
_ +ijma -joa - +jwa .
Gt(s) {Zs - se”2° [e ©+e c] -jw e as [e ¢ .. cha_‘]l
2a 52 + wc2 J

, Gt(s) g 2s - 2¢ 2% [ Cos(w,a) - ®, Sin(aaca)]}

52+0.)2
c

2a

Gt(s) ( s - e 2% [s Cos (a)ca) - ®, Sin (wca)];
a {. 2 2

s + o
Cc

Now to investigate R(s) for small a, the limit of R(s) as a = o is taken:

i oy - fin (1 {s_e-as[s Cos (coca) - mcsin(wca)]}] , Gt(s)

-0 a—-olsa 2 2
a . s+

Although this takes the indetermimnate form o/o, application of L'Hospital's

Rule gives:
. o+ se 2° [s Cos(w a)- o Siﬁ(w a)l

L‘j;m R(S) = Li.)m 5 2C (o4 e

a=o a—o 24 o
c

- e %% [-wcs Sin (w a) - w 2 Cos (wca)]
+ 5 £ < G (s)
s 2 t

+ O
c
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Lim Sz-l-cL)c2
= a0 53:'@} f‘}t(”} =1 {Gt(s)} -
c o . .

Lim

a =0 R(s) = Gt(S) .

Thus, in the ;imit, R(s) = Gt(s), as one would intuitively expect. Un- .
fortunately, it is difficult to estimate how élosg the functional form of
R(s) approaches the functional form of Gt(S) by substitution of finite non-
zero values for "a" and ‘hh" in the above equation. However, the limiting
prbcess shown abdve doesvaid in justifying the intuitive notion of using
s@ort-pulse.modulation to obtain an apprdximate measure of G(s).

Presuming that R(s). and Gt(s) can be made essentially equal by se-
lection of a proper modulating function, the determination or measurement
of Gt(s) beconmes & straight-fofward radio detection and computation prob;
-lem. To obtain Gt(s), the Laplace transform of r(t) mst be teken. This
. can be done in at least two different weys. If apparatus is av;ilable for
direct measurement or direct fecording of r{t), the computation of R(s)

can be performed directly. If respomnse difficulties prevent direct measure-
ment of r(t), e combination AM and PM detection scheme can be used to ob-
~tain a(t) and #(t). These functions together with @, can be used to re-
construct the functional form of r(t), and the transform can then be taken.
The computation can bé'performed by either digitel or analog computer
techniques or by a combination of both. Also the computations can be per-
formed either in real time or in machine tiné vhichever is appropriate to

the applicetion.



24

Another way to obtain an gpproximate measuré §f the stationary-target
transfer~-function, Ft(w)’ [recall that Gt(jw) = Ft((.u)] is to sample the
frequency spectrum of the target. To do this , a set of c-w radars can be
used. As shown in App_e_ndix C, each c-w radar operating at a unique fre-
quency gives rise to a pair of discrete lines (impulses) in the frequency
domain; one line is located at w0, and the other at 0. By using a set
of these radars with bcarrier frequencies separated by a proper interval,
saﬁpling iﬁpulses aré produced in the frequen'cyv domain which are separated
by & proper sampling interval. To determine this proper sampling interval
it is necessary fo refer to the sampling theorem in the frequency domain.
Consider, again the object's impulse-response function, y(t), which has a
‘Fourier tr-nsform exactly equal to the frequency spectrum of the object
being observed. Since the target's impulsive resporse exists during a
finite period (say T seconds long) only, the function, y(t), need only be
specified during this finite period. Now any function completely speci-
fied within a finite interval, T, can be representedn exé.ctly within that
interval by a Fourier series of terms with fundamental frequency, 1/T.
This series consists of an infinite number of harmonics each of which ex-
ists in the frequency domain as a pair of impulses. Also each harmonic
frequency is separated from its neighbor by l/T cps. Thus, the sampling
theorem (4, p. 71) reasons that an infinite mumber of sampling-impulses
separated by l/T cps are sufficient to completely specify the function,
y(t). Applying this reasoning to the situation at hand, it becomes clear
that the object!s frequency spectrum can be completely specified by using

an infinite number of sampling impulses spaced l/T cycles apart or 2:r/T
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radians apart. By using a finite set of samples, i.e., a finite set of
c-w radars, only a finite portion of the frequency spectrum can be sampled.
However, practical interest is always cor;.fined to a finite portion of the
completely infinite spectrum sovlittle genérali’cy is lost by this restric-

tion. More will be said about this later.

o«

F. Determingtion of Physical Realizability

After the transfer function, Gt(s) , [or Ft(w)] has been measured it
may be desirable to perform a check on its physical realizability. COne re-
quirement for the physical realizability of Gt(s) is that the impulse re-
sponse, y(t), of the system must be zero for negative time, i.e., y(t) =
Lt [Gt(jcn)] = o0 for t < 0. Also y(t) must approach zero as t —®. If
these two conditions on y(t) are satisfied in the time domain, the physi-
cel realizability of Gt(s) is assurred (4, p. 225).

Corresponding statements can be made in the s-plane and in the w do-
main. Specifically, a necessary and sufficient criterion is the Paley-
Wiener criterion (4, p. 226) which assures physical realizability if and

only if the integral

+ ] - 0

Ia\'/v.ILOS IGt(J'(D)i‘d!D ) f 'Log lFt(aa)l{ Ae—

2

l+a>2 l+w

o -0

has a finite value.
The s-plane statement, lends jtself as a methemsticael type test for
physical realizasbility, whereé.s the time domain sta.temen’bs are useful in
a plausibility argument. Such a plausibility argument will now be stated

to indicete that all reflecting objects should yield transfer functions
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which ai'e physicelly reelizable. The reasoning is as follows: If a wnit
impulse could actually be used as a moduiating function, if antennas were
capable of handling such wide-band informetion without distortion and if 5
further, the transmitting medium gave uniform attenuation without distor-
tion, the return signal, r(t), would be a true measure of the impulse re-
sponse of the target transfer-function. Obviously if the impulse were not
transmitted until some time, t = o, the target could not reflect before_l

t = 0. Thus the response, y(t), could not begin before t = o.  (This is
true even if the varget and radar are effectively separsted by zero range
by compensating for the round-trip transmission-time). Since y(t) cannot
occur before t = o, and since y(t) is the impulse response of G(s), one

of the time domein criteria for physicel realizability is satisfied. The
other criterion, namely that y(t) = o as t » =, is also felt to be satis-
fied since no known reflector has regenerative properties and all known
reflectors have at least some small energy ebsorbing or dissipating char-
acteristic. Thus r(t) should @ o0 as t »». Unless some fallacy can be
found in the foregoing reasoning, it will be presumed that all stationary,
passive targets give rise to physically realizable tra;asfer functions.
However, for any target which might cause skepticism, the mathematical con-
ditions outlined at the beginning of this section can be applied to provide

definite confirmation of physical realizability.
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IT. UTILTTY

A. troductory Comments

The preceding discussion has served az mltiple purpose. First it
served to introducé the notion of a complex réfiection fﬁnction which can
be used to characterise the spectral behavior of é, reflecting object. Sec~
ondly it showed the relationship between this spectral representation and
the impulsive response of the reflecting object, namely that the two func-
tions form a Fourier or Laplace transform pair. Thirdly it served to point
out the correspondence between the object's reflection function and an e-
éuivalent network transfer-function which is physically realizable. Lastly
. it was gble to indicate techniques by which the reflection function could
be measured either indirectly by measuring the impulsive responée or direct-
ly by sampling in the frequency domain.

The purpose of this section is to point out the utility of the reflec-
tion function and its corresponding equivalent network. In doing this,
Mer comments can be made concerning the character of the reflection

function and its measurement.

B. Object Identification by Correlation
with Elementary Shapes

To begin with, it will be recalled from an earlier statement that the
really basic utility of the reflection function, Ft(w), [or Gt(s)] lies in
its ability to be used with an arbitrary transformed illumination signal,

si(a)) , to f£ind the corresponding transformed reflected signal, Ri(w) , Ll.e.,

Ri(a)) = _Si(a)) Ft(a)) in Fourier form
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or
Ri(s) = 8.(s) Gt(s) in Leplace form.

Now suppose, for example, that the reflection functions have been measured
and catalogued for several objects of rather elementary geometric shape

such as a sphere, a cylinder, a rod, a bar, a cube, etc. Suppose further
that an equivalent electrical network is built up to represent each of the
elementary shapes. Now suppose that an arbitrary illumination signal,

Si(a.)) , is used to illuminate an unknown reflecting target. Let the same
illumination signal be passed through each of the several networks which
correspond to elementary geometric shapes. Then let the return, ru(t) 5

from the unknown target be correlated wifh each of the several outputs of
the elementé.zy shape networks. If the unknown taréet is predominately
spherical a good correlation between its return, ru(t) , and the output of
the sphere-type network will result. Similar comments can be méde regarding
the other elementary shapes. In other words, by correlating the return from
an unknown target with returrns that would be obtained from targets of pre-
described and known shapes, the geometrical cheracter of unknown targets can
be learned -- at least 1.n an approximate sense. Thus the representation of
reflecting objects by equivalent networks is seen to have at least one use-
ful application. Admittedly, such a technique could conceivably involve

an exbremely elaborate array oi‘ elements with corresponding equivalent net-
works; but, none the less, the possibility is apparent. As a mat’cér of
fact, when operé.ting ’in a real-time sysfem with target recognition and iden-
tification of paramount impoi‘tance such a scheme could be most worth-while

in spite of its complexity.
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A block diagram of a typicael system is shown in Figure 5. Note that
the scheme shown there requires "n" cross correlators, each of which
could conceivebly contain a complex piece of computing equipment. Fovrtu-;
nately, however, the correlations (which are of prime importance in the
recognifion process) can be handled simultaneously during normal radar
tracking operation without the need for complex computing equipment. Such

correlation is carried out by matched-filter network methods.

C. Matched-Filter Correlation

To understand the process of network-type correlation-techniques (3,
p. 232), consider an arbitrary catalogued return, ri(t), having Fourier
transfornm, Ri(ﬂ)) = |Ri(“’_)| e.*-J Ri(w). Consider elso a filter with a trans-
fer function, G(w), defined by V
- ot -3 [y (@) + ot ]
(o) = Ri*(w)e o= IRi(w)l e * ,

| ‘ - just
where Ri*(a)) is the complex conjugate of Ri(a)) and e © is a phase shift

factor to be discussed later. If the return signal,' Ri(w) , 1s passed
through the filter, the output, o(w), can be expressed as

= . *

o(w) : Ri(w) Ri (w)e .
+jwbo

Multiplying through by e gives
+jasto
o(w)e = Ri(a)) . Ri*(a)) .

The corresponding time domain representation is
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A
ofr+t )= | m@e(rax,
o
where ri(t) is t';he time domain representation of Ri(w) , and ri*(t) is the
time domain représentati_on of Ri*(ﬁb)- |
It is shown.in Appendix D that ri*(t) a ri(-t), S0 ri*(‘r-x) = ri(x-"r).

Therefore,

ofv+t) = f r (x)ry (x-m)ax.

-]

- f r, (x-)r, (x)ax.

By letting x-T =y, it is cleatr that x =y + 7, and dx = dy. Thus,

[} . .
ot +t )= | =(ry(y+ 1) ay =4, (%)
s ) ivi
The right hand side of this expression is seen to be the finite-autocor-
relation function, gfr - (7). By meking another change in variable, namely
: iti

t=1T+ to’ it is clear that

o

o) = [ e v+t -t)ay=4, _ (&-5)

- 131

Now ;zfr . (t) is the finite auto-correlation function and exists as an out-
i'i ‘ "

put only when the input signal is the signal to vhich the filter has been

matched in its design. If the input signal is not the one to which the

filter has been matched, the output will be the finite cross-correlation
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function. To see this mathematically, ‘consider a filter ma“_bched. to a
particuiar return, ri(t), with Fourier transform, Ri(w). Wlth the filter
matched to r;(t) its transfer function will be given by

- jest

Glw) = Ri*(w)e °.

Now consider that an unknown return signal, Ru(a)) , enters the filter. The -

output will be
o(w) = & (o) [B,*(@)e o].

Thus,
+juwt

o(w)e ° = Ru(cn) Ri*(w) .

Hence,
400

o(T + to) =f‘ "ru(x) ri*(T - x)dx.

«©
However, r;*(t) = r;(-t). Consequently,

400
o(t + to) =f ru(x) ri(x-'r)dx.

-0
Now by letting x - T = y, we have

o(7 + to) =J ru(y + 1) ri(y)dy.

L0

This can be written as
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400
ot + t) = [ 2G) x (v + Dy = 4, (o).

i"u
Now if 7 + to = t, it is clear that

400

~

o(t) =-J' r(¥) Ty + v - s =g (8- t).
oo i u

It is easily seen that in the special case where u = i, the finite cross-

correlation function, dr . (t - to) becomes the finite auto-correlation
i'u

function, dr . (¢t - to). ,
ii '

It is therefore seen that the output, o(t), of the filter is either

¢r.r.(t - tO) or ¢r

. (t - to) depending upon whether or not the input is
Titi iu

_the one to which the filter is matched. These functions are just the
finite-correlation functions (shifted to ﬁhe right in time by an amount 1:0)
of the catalogued signal, ri(t). The effect of the phase shift factor,

—Jat, N R _ o _ _
e , used in the definition of G(w), is now apparent. As a resull of
this phase shift factor, the 6utput, o(t), differs from ¢r.r.(t) by a

. : i"i

simple translation in time. The choice of to must be made so as to make
" G(w) a physicaily realizable network. This is the only restriction placed
on the selection of = to velue. Although earlier comments about physical
realizabiiity have been made, those comments had to do with the physical
- realizability of Ft(m).
However,

-Jwt x —Jwt -Jjust
G(w) = R¥(w)e °= [Ft(w) - S(w)] e °= Ft*(w)s*(a))e °.
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Thus

-Je ' -Jut,
le(w)| = [F X(w)s*(w)e ~ °f = [P x(w)] Is¥(@)]le ~ "l=lF (0)]Is()] (1)

Now for physical realizebility of G(w) it is necessary and sufficient that

the integral

p [me le@)] e
Iﬁ.f' l-i-co2

(o)

have a finite value. However,

® [Log lo(w)] dw | : lLoglFt(w)l |s() | Iejwtol /dw
I =Jr =8/' "

l+a.>2 l+.cn2
o .
~ [Log IF ()] + Log |S(a)] | a
g l+w
[¢)

out {10g Ir(@)] + Tog Is(@)l| < [zog Ie (@] + [1og Is(e)l]

 |tog (@) [ @ - T Jog [S(e)][ -
o s [ LN [ e
l+w l1+ow

(o] o

Now the first term on the right of this inequality has already been es-
tablished to be finite since Ft(cp) corresponds to a physically realizable
network. The second term must alsc be finite since S(w) also corresponds
to a physically realizable network. This is true since_ s(t) =0 for t<o
and s(t) 2o as t »®, since no illumination signal can be on forever.
[Recall that s(t) = F T {s(w)} 1. Thus the right-hend side of the inequal-

ity is finite. Moreover I is not negative since the numerator and



denominator of its integrand are never negative. Thus,
o < I < some finite number, M

Therefore, I = a finite number, N, and so the physicel i‘ealizability of

G(w) is assured. Thus if g(t) = Ft ZG(w)} , then g(t) = o for t < o.

Now,
=) © '
- = — * = ¥t
g(t) = 37 fg(w)e =5 | B dw = ,*(t-t )
w00 =00
= ri(to-t).
Thus,

g(t) = ri(to-t).

It is therei‘ore.apparent that for g{t) to be zero for t < o, the return sig- _
nal, ri(t) 5 mist be completely subsided by the time, t . In actuality, the
signal return, ri(t) , must first be examined to determine the period out-
side of which ri(t) essenﬁially subsides. Knowing this, eny time, ;bo’
which is greater then this period can be picked for use in the specifica-
tion of the transfer function, G(w). This assures that ri(t) subsides be-
fore t = ’co and correspondingly assures that G(w) will be physically re-
alizable. Thus the system of Figure 5 can be replaced by the system of Fig-
ure 6. Note that the correlators are no longer needed. They have all been
eliminat:g con;pletely at the expense of one additional block nemely the

=d

s*(w)e © block. Note that the F, (w) blocks have been replaced by

F, *(w) blocks. This adds no additional complexity since [F(w)*]| = |F(w)]
i
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and [F¥(w) = - [F(w).
In order to provide a set of references with which to compare the

various ¢r (t - to), it is suggested that a set of ¢r.r.(t - to) be used.
-j(l)t 1

These are easily generated by using a set of Ft(w)e © biocks. The use

. T
iu

of such a set is illustrated in Figure 7.
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ITI. SYNTHESIS

It was pointed out in the introduction that any particular target's
reflection function could be measured by at least two techniciues. One
involved the use of unit impulses or reasonable facsimiles thefeof. The
difficulties in attempting such measurements were pointed out and another
method was suggested, ‘tf.he latter invqlving sampling in the frequency do-
main. Fortunately this second method not only allows exact measurements
to be made relatively simply but also mows the data (which would be
collected by this method) to be used immediately and simply in a synthesis
scheme to rea.liie a network equivalent. To understand this method com-
Pletely and to see how it leads To a simple and direct synthesis procedure,
consider any reflecting object and let its impulsive response, y(t) , be
confined to the interval, o <t < T, as shown in Figure 8. Because y(t)
is confined to the interval o < t < T, it is possible to expand y(t) in a

Fourier series (3, p. 22) in that interval, i.e.,

40
y(t) = E o] e 2Tt o<t<m
n T
n = -
=0 0>t2>T
(-]
jnﬂ%t
or y(t)=i c e 0<t<T
N o
= 0 OthT
1 T -Jnmbt
o = =
where C, Tfy(t)e



f y(vt)

Figure 8.

A typical impulsive response
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a.nclcnne—:rr
0

S -jat
but F () =J y(t) e at
-0
T - jwt
o) Ft(cn) =f y(t) e at.
(o]

.

Therefore
T

7 -J t
() = [ y(0) e O
e

dt .

By comparing this expression for Ft(nmo) with the expression for C, it is

seen that
1
Cn = T Ft(nmo) :
_’Ihus
= rl Jnw t
y(t) = § I.T Ft(nwo)e ’ o<t<mT
n = -« .
=0 ,' 0o>t>T
0 jast

. -J
Now Ft(co) =] y(t) e at
-0

1 jnmot ~Jjust
=f E 7 Ft(nwo)e e dt
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Now let t = ¢ + T/2 then dt = dt, and vhen t = o, % = -7/2. Also, when

t =T, t = T/2. It is now possible to write

n = 4 T/2 . ~
Z -j(w-nw Y(t+T/2)
F_t((b) = %Ft(nwo)-/. o J( nﬂ)o ( -+ / a
n= - -T/2
== 1 j{w-nw )T/2 T/z -j(w-nw )t
B 2 - 7 Fylowyde ° e at
n= -2 -T/2
( ) T/2
n = 4= -3 T/ =-Jj{w-nw
- § %Ft(n“’o)e e 2/ e
n= -« —j(w—nwo)
~-T/2
+ . -3(emmms Y1/ e+j(w—nwo)T/2_e-j(w-nmo)T/2
= - g TFt(wo)e
n= -® j((D-n(Do)
n= 4® . ,-,j(w-nmo)T/E e+j(co-m6)T/2-e-j(a>-nmo)T/2
= g T Ft(nmo)e 53
. n= -»®
' (w-nw )T
1
T [ — ]
= -§(e~nw )T/2 ~Sin [ 7/2]
=: P (ms, e J(a-ne )T/ 2/ in [(w-nw ) /2} .
n= - [((D—nﬂ.)o)T/zl
Therefore,
+ @ .o T
-j(z - nr) (¢Sin [Z= - ax]ly
e E e gEemy
n= - [(éil'_ _ m]

This expression shows that Ft(w) is completely determined and expressible .
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in terms of its values, Ft(nmo) , at the sampling points. As a matter of
fact it is a mathematicel statement of the sampling theorem in the w-

~ domain and the mathematical development which proceeds that statement can
be looked upon as a proof of the theorem.

Now to digress momentarlly, consider the system shown in Figure 9.

A (s)
The tra.nsfer function, G (s) = % , is given by
: in

_ i o A)IE“ 2A(n ) [(-nwy 2 ) + sb_
Gt(S)-(l-e R J;—E-F TO [221(;&0)2 }

n=1 s

o

where a2+b2=landtan-l—£=¢(nw).
n n bn o

By teking the inverse Laplace transform, the impulsive response, y(t), is

obtained:

y(t) = —[u(t) - p.(t-T)] A(o) + 22 A(na) )COs[m t+¢(m> )]}

n=1

y(t)= Hu(t) - w(s-1)] A(o>+e§

n=1 2

N

A(nw ) [ eJ[motM(nwo)]-&-e ’ MOt+¢(an)]J§

o .[
y(8) = 3 (8] - w(om)] fA(0) + > (e &0 AP
n=1

+[-na)t- nw )]
-rz A(nu.) eJ 2 o)}

but A(nwo) = A( -_nwo) and -¢(nwo) = ¢(-an) so it is possible to write:
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Block A
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w (bnsg) 2 A(nu)o)
%

1 (s + (_n(uo) T

Block B

Figure 9. System block diagram
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: =2 jlnw t + d(nw )]
y(t) = Flae) - w(-1)] alo) + = A(nuoc,)eJ gt + glaes,
n=1

) j [ - t -T )]
+ E a( -nmo)eJ ot 8 o }
n=1 '

© ilnw t + ¢ )]
=-]rf‘-[p(t) - u(t-T)] EA(O) +§ A(nw )eJ ot ¢(m°
n=1 ©

' =0 jlnw t + d(nw )]
= A(wo)ea‘ &+ #lne) g .
n=-1

Now #(o) = 0, so it is possible to write
- jlow + gow )]
A(o) = A(o)e .

Then it is also possible to write

+ - ilow t + d(nw )]
y(t) %[u (t) - p(t-fr)]é(_g_m A(nﬂbo)eJ nw nw_ ;

or . | ® ' ;!-‘y!( Y] +inw t
y(t) = % [u(t) - u(t-T)]iE [A(na)o)e J nwo] e JB0 } .
= -0
3f(nw t)
However, A(nmo)e = Ft(nmo), so
+jno.>ot

. 4
y(t? = %— [u(t) -p(£-T)] é F.(on) e

Taking the Fourier transform of y(t) gives

e + +jnw t .
Ft(w) =F{y(t)}= .]T:f [ (t) - p(t-T)]é Ft(nwo)e o o IOt g4
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1 = : = -j(a)-nmo)t
=z E Ft(nwo) J [u(t) + p(t-17)] e at
=
- Iy .
| 2= [ oo ) ]
a = 2 F (nw ) f e : at | .
T = £t o
By letting t = ,1\: + g— the above expression can be written as
) . |
L= /2w )(E-1/2)
e} A
Ft(o.)) =z 2 Ft(naoo) , J e dat
N X7

and after carrying out the integration,

420 -jA[g - nx] £ Sin [¢T _ nx] Y-
Ft(a)) =§ Ft(nwo~)e 2 g 2 ; .

ne=— [‘5—’—1'-_ - ax]

This is seen to be the exact expression that was obtained for Ft(u))
in the develoi)ment of the sampling theorem. Thus, if it is possible to
synthesize the system of f‘igure g, ‘that system will serve as a.n exact net-
work equivalent of the reflecting object considered at the outset of this
discussion. | |

To see that this synthesis possibility does exist, at least in
theory, it is oniy necessary to examine Figure 9 carefully.on a block by
block basis. To begin with, the blocks having transfer functioms, e"Ts s
and, %, are immediately recognizable as a pure delsy network and a pure
integrating network respectively. Both can be synthesized (6, p. 18 and
é, p. 116) to any desired degree of accuracy by standard network synthesis

techniques. The remeining blocks, namely blocks A and B, will now be
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considered.

Beginniﬁg with block A, it is immediately noted that since an infi-
nite -sum is needed to express this transfer function, it can be obtained
by using en infinite number of sub-blocks each having a traﬁsfer function

of the form

Al

(-no 2 ) 2A(n )

5 5 , i.e., the first sub-block has transfer func-
[s“ + (nmo) 1

tion:

[-(l)woal] 2A[(.l)a>°]
G, = —
.tAl {sz+ [(1)@012} i

the second block has transfer function

[-(2)e ] 2[(2)e]

GtA - zsz + [(2)cuo]2§T

2

2 .
and so on. Ry combining these blocks in the ma.nﬁer indicated in Figure 10,
the owéefa];;l. tra.nsf.er function of block A is obtained. Since all of the
blocks have essentially the same functional form, they can each be synthe-
sized by essentially the same kind of netowrk. For example, the nu1 net-
work is shown in Figure 11.

Block B is synthesized by using an infini‘ce number of sub-blocks also,
and these sub-blocks are combined in the seme menner as. the sub-blocks of
bioék A. A.g-aing since the transfer functions of the sub-blocks all have
essentially the same form they can all be synthesized by essentially the

same kind of network. For example, the nth network of block B is shown in



L
~)

——— Block A
prmeeeee—— ot BlockAz'
I
l.
!
|
|
(s) 1
B 13 i
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ete. | ete.

Figure 10. ZBlock A as composed of its seperate sub-blocks
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Figure 11. Elock An as composed of electrical elements
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Figure 12.

It is noted that a doubly infinite number of sub-blocks are required_
to provide an exact synthesis of the object's spectral character over the
completely infinite spectrum, o < w < «. However, 3_;1 practice, as was
pointed.out earlier, interest is usually confined to only a finite portion
(say, W, <o Swz) of the completely infinite spectrum. Also, one is us-
ually content, when synthesizing arbitrary spectrs, to provide an aﬁprox-
imate it rather then an exact fit. For example, if the s?nthesized spec-
trum is made to match the measured spectrum exactly at a sufficiently
large number of boints, a deviation of the synthesized spectrum from the
desired spectrum is permissible between these points. It is this kind of
synthesis that can be made in a relatively easy and straight-forward man-
ner by using only a finite number of sub-blocks.

The synthesized spectrum can be made to match the obqect's measured
spectrum exactly at the so-called sample points, and since these sample
points are spaced sufficiently closely to preserve the informative charac-
ter of the spectrum it is felt that such a synthesis procedure is both ade-
‘quate and gppropriate. OFf éourse the effect of this procedure back in the
time domain is to provide an appréximate synthesis of the object's impul-
sive response, y(t); over the intervel, o S t f T, by using only a finite
number of sine waves rather than an infinite number.  This, of course,
is quite typical of any>practical synthesis prqcedure using Fourier methods.
It is particﬁlarly suitable to the.problem gt hand because the interest
" here does not go beyond scme upper frequency limit. For exemple, the radio

frequency portion of the spectrum does not go beyond 6 x lOlo rad/sec
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(7, p. 32) and the radar frequency portion of the completely infinite spec-

trum does not go beyond 2 x 107" rad/sec {7, p. 32). Although, interest

may in fact begin at some W) > o (for example W, = 6 x 10% rad/sec and

6 x 10° rad/sec (7, p. 32) for the radio and radar portions of the spec- .

trum, respectively), it msy go down as low as zero radians per second, i.e. .

down to d-c. In those cases where Wl > o, the Fourier sum will contain no

frequencies below Wl’ i.e., the d-c component, and those harmonics below

Wy

are taken, the synthesized y(t) is of course not equal to the actual impul-

will not be present. In any case where only a finite number of terms

sive response of the object under investigation; buf_. since the interesting
porfion of the object's spectrum is confined to the region WJ: So< W2,
the synthesized y(t) is just as useful in terms of the normel convolution
procedui'es for obtaining outputs in the time domain, providing that the
inputs that are to be convolved with the synthesized y(t) conté.in frequen-
cy terms that are also confined to the region W, <w< Wy. This is in
Tact the sort of consideration that makes it .poss'i'ble to specify a region
of interest.

Typically the spectra of radio and radar transmission signals are con-
fined fo regions of this type. On the other hand, it is presumed that
studies of the spectra of specific objects will illustrate those portions
of the object?!s spectra that are most interesting, and the selection of
appropriate operating regions can be makie on this basis._ Then, proper mod-
ulation signals‘ can be selected so as to confine future transmitted spectra

to those regions. This later approach is in fact another importent justi-

fication for examining the spectra of specific objects. For example, from
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a radar tracking point of view it may be possible to opfimize (a.t least
in some sense such as minimizing bandwidths) the system pperation by
appropriately combining or matching modulation speectra to object spec-
tra. |

Having digressed momentarily to justify the use of finite Fourier
‘sums » 1t is now possible to return to the p:;'oblem at hand, namely that of
using the finite number of sampled daté in -the s.y;lthesis scheme. To do
this, it. is cc;nvenie'nt to proceed in the following way: Pick any one of
the n sample-points, say 't;',he kth. By using the amplitude, A(ka)o) , and
the phase d(kmo) that exist at thet sample point and ‘by letting ak/bk =
"¢(kmo) and ak2 + bk2 ‘

b, - Knowing ‘these two constants, the value, A(kwo), and that the sampling

= 1, it is possible to solve immediately for & and

J‘.nterval; T, is related to W, by the equation T = 21(/0.)0, the turns ratio,
N2/Nl’ of Figures 11 and 12 can be computed. Also, by equating the LC
product of the inductance and capacitance of those figures to [l/kmole,
the blocks Ak and Bk are easily synthesized. This same proc.edure is then
repeated at each sample point and the sub-_blocks are thereby synthesized.
The total synthesis is then completed by combining the sub-blocks with the

delay line and integrator as illustrated in Figure 13.
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IV. MEASUREMENT GUIDE-LINES

A. Selection of Sampling Interval

In the preceding discussion it was shown that the sampling interval,
W, was inver;ely proportional to the duration, T, of the im@ulsive re-
spoﬁse, y(t). If T were ¥nown, the sampling interval could easily be de-
termihed. However, when one begins to take measurements on a particulaf
object, exact knqwledge of T is not available. Therefore, the precise
saméling interval is unknown and must be determined as a part:of the
megsurement process.

To determine the Sampling interval, a certain amount of trial and
error is required. Fortunately howefér, by using a little intuitive rea-
soniﬁg, an gpproximaté measure of T, aﬁd therefore @, can be obtained
rather quickly by simply examining the size of the object of interest. The
reasoning is as follows: If a plane wave were to impinge upon the object,
a reflection or return would be initiated at the moment that the wave
struck the front of the object. The wave would then traverse the object
until it reached the back side and another reflection would occur. The
composite return would essentially subside shortly after this second re-
-flection, and thus the duration of the return would be expected to be
"roughly" equal to the time that it takes the plane wave to swWeep across
the objeét. If the largest path distance from the front to the back of
the object is called 4, then

T ~4d
c

where c¢ is the velocity of the light.
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Admittedly this is a rough approximation but it does provide a starting
point for the measurement process.

. Knowing T approximately, the sampling interval is known approxi-
mately, and m;easure;nents can be taken throughout the spectral range of
interest.” As these measurements.are taken, noticeable variations will
occur in A’(ncno) and ¢(nwo). The violence of these fluctuations will also
act to confirm or contradict *the s@ling-interval choice and some cursory
a.djustmént can ‘bé‘ made. Once the interval "appears" to be correct on the
basis of sweeping time ‘and fluctustions in the measured values, a mathe-
maticel check can be made. To perform this check, the sampling-point
values are used to predict the values say midway between the sampling
points. The prediction function is just the finite-terms wversion of the
sampling function discussed earlier. For exemple, if the spectral range

is W, <w < W,_, the value of the reflection function at any point, w?!, is

1 2?7
given by:
14
-W. ] '
—ml -3 [(wTT) - nx] Sin [a)_zT - nx]
fo) .
?
. Ft(w ) = E Ft(na)o)e of T
Y (== - ol
n=—2
I
0.
W
2 . fo!T _ w!T
5 -Jj [T-mt] Sin [T-n:r]
' b
+ /Z—— ..Ft(m)o)e m—zg - nx] ’
1
n=-—
®
o

vwhere W, and W, are adjusted so as to make Wl/a)o and We/aoo integer values.



Having performed such a calculation at each of the points which lie
midway between the original éampling points, measurements are taken a;t.
these same points for comparison. If the comparison is satisfactqg vthe
original choice is deemed corre'ct;' if ﬁot, the sampling interval is chosen
to be one half its origj.nal size and the process is i‘epeé.ted. Once a
satisfactory comperison is reached, the sampling iritgrva.l is known and the
values of the complex refiectioﬁ function cé.n then ‘be. used in the syn‘éhe-
sis schenme Q.escriﬁed earlier. Fortunately, ’t;he sampling interv'al.'t}.:lat- is
used in'the megsurement schem;e need not be exactly egual to the ideal
sampling interval; as long as the samples are taken at least as close to-
gether as the ideal sample spacing, no information is lost. Of course in
%he interest of efficiency it is not wise to take too many samples. The
method described above will allow the approximate sample spacing to be de-~
termined without losing information end without sacrificing efficiency.

At worse, the approximate spacing will never differ from the ideal spacing
by more than a factor of two, and it will always be less than or equal to
the ideal spacing.

To understand why no ‘information is lost in this kind of sémpling
process, it is only necessary to recognize that using a sampling interval
which is slightly less than ideal, correspc;nds to expanding y(t) m é,
Fourier series which has a fundamental component with period slightly
-la.rger than T. Since y(t) is confined to the intervel, o S t S T, nothing

is lost by exemining y(t) over a slightly larger period.
B. Selection of Spectral Interval

In attempting to decide on a spectral'f.nterval, Wl <o i W2 , over
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which fo meke measurements i‘or‘a.ny’ particular object, very little specific
information is available. However the Advanced Electronic Systems Group
at General Dynamics Convaif, San Diego, California (2) has provided a plot
of the interesting portion of the freguency spectrum of a conducting
sphere. This plot is shown in Figure 14, and it provides a. certain amount
of guide-line information which may prove helpful in general. Notice that

both the phase shift and normslized echo area are plotted as a function of

d/l where d is 'the diameter of the conducting sphei'e. Since A is inversely
proportional to freg_ue;cy, d/)» is proportional to frequency.

The term "echo area" (sometimes called "radar cross-section") has been
used historically (S, p; 445) instead of ampiitude because in the e;:;'ly
studies of radar-target reflection-functions no attempt was made to examine
the complex (both amplitude and phase) character of the reflection process.
Actually, the echo-area function is just the squared-amplitude function.
Squared-amlitude is. of course proportional to power. Reflected power is
in turn @roporti_onal to the object's cross-sectionel area for 1llum1nat1ng
wavelengths which are much smalier than the physical dimensions of thé ob-
ject. By dividing the echo-area function by the ci‘oss-sectional area
('1rd2/4) of the sphere, the so-called normalized echo-area function is ob-
tained. It is this function that is plotted in Figure 14.

The choice of d/M was mede purposely to illustrate three points, i.e.,
three useful pieces of information: Note that the variations in both
phase and normalized eché-a.rea are most violent in the vicinity of d/)\. =
1, i.e., in the region where the illuminating wavelength is nearly equal

to the sphere diameter. Notice also that when the wavelength is .increased



Figure 14. Phase and amplitude components of the
backscatter transfer function for a
sphere
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to several times the spﬁere:diameter; the variations are mch less vio-
lent. After an increase of an order of magnitude or two (5, p. 453),

the variations ére small enough to become negligible and the echo area
approaches a constaﬁt value eqﬁal.to the geometrical cross-sectional ares
of,the:sphere. This behavior séems reasonable in the physical optics
region of wavelengths, since in practice when one views any nominal-sized
object with various colors of light the‘object étill appears to have.the
same reflecting cross-sectional area. On the other extreme, vhen the il-
lumination wavelengths are an order of magnitude or two larger than the'
dimensions of the object, one would intuitively expect only an increasing
amplitude veriation as illumination wavelengths are decreased because the
target is so small that it has very little effect on the reflection proc-
ess. Also the effect would be expected to increase as the Size of the
target begins to take up more and more of the wavelength of the impinging
wave. Such an increase in the low-frequency end of the spectrum is ob-
served in Figure 14. |

| These arguments are admittedly intuitive and can provide only & wvery
roﬁgh insight but af least they do provide a-starting point for measure-
ments. That is to say that since the low-frequency behavior seems to be an
iﬁcreasing one for increasing freQuency, and since thé high-frequency be-
havior seems to become constant with increasing frequency, one would expect
the fluctuating behavior to occur in the mid-frequency range, i.e., where
the iilumination wavelength is comparsble to the dimensions of fhe object.
Because of the relationship that exists between object dimensions and il-

lumination wavelengths, a scaling property is obvious; the larger the object,
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the larger the wavelength must be in order to lie in the'region‘of‘fluc-
tuafion, and conversely. The region in which the fluctuétions occur is
deemed the region of greatest interest, and by beginning measurements in
this fegidn and working awey from it in both directions, the greatest a-
mownt of informa.tion can be collected in the shortest time. |

I# should be noted that the intuitive arguments stated above are felf
to apply in general but are only'&emonstrated here by one specific example,
namely, that of a conducting sphere. Also, the reasoning wés confined to
the echo-area behavior’rather than to both the phase and echo area behav-
iors. In the case‘of the spheré the varigtional phase behavior seems to
be confined to the saﬁe interval as the variational echo area behavior.
Hopefully this property will be found true in general. However adequate
" spectrel coverages of other interesting objects do not appear to be avail-
able iﬁ sufficiently broad ranges to provide confirmetion. This lack of
informatiop, however, adds to the importance of experimental investigation

and in part justifies the study presented here.
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V. CONCLUSIONS

On the basis of this study ir. is appérent that cé)mplex reflection-
funétions exist for reflecting objects which are uééful in dharacterising
such objects in a manner gomewhat equivalent to the representation of e-
lectrical networks by complex transfer-functions. Each reflection function
can be used with arbitrary inputs to determine corresponding outputs (re-
flected sighals).

| Although aﬁélytic determination of these functions is quite limited,
the functions themselves can be measured by two technigues. One involves
the use of unit impulses and the cher 5.nvolves sampling in the frequency
domain. Emphé.sis here has been placed on the latter. This latter method
allows the reflection function to be measured in a-simple manner and also
allows the raw data to be used in a Straightforward manner to cbtain a
synthetic network equivalent of the object's spectral behavior.

Such network equivalents can then be combined in an elaborate array
1_:0 form a recognition system which can be used to identify .unknown objects
(at least in an approximate sense) in terms of known objects of elementary
shape. For example, by cross-correlating the return from an unknown ob-
ject with the return from objects of simple elementary shapes such as a
sphere, a rod, a cube, a bar, etc., it appears possible to identify the
significant characteristics of the unknown object. The system performs
the cross-correlations by using matched-filter technigues.

Aside from their use in such & recognition scheme, the reflection
functiéns also provide information which should prove useful in matching

modulztion spectra of illuminating radars with the spectral character of
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the objects being observed, or tracked.

Definite guide-liﬁe$~are available which can be used to expedite the
future measurement of interesting reflecting objects in an efficient man-
ner while preserving the informative characte: Qf the object. These
guide;iines have to do with the selection of spectral“ranges of interest
and with the selection Qf rroper sampliﬁg intervals. Both selections are
made on the basis of the object's size (whereas the informative charac- |
ter depends on the object's shapé). By adhering to these guide-lines the
required information collection is reduced to a straightforward radio il-

Jumination and detection problem.
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VIII. APPENDIX A

Although many different limiting techniques can be employed in the
definition of the unit. impulse, one (1, ». 255) is particularly suitable
for Laplace transformation. The definition is made in terms of the dif-

ference of two unit-step functions, i.e.,

a(t)ﬁ Lim
a—o0

t) - u(t-a)
u‘ au( a]

.where 8(t) is called the unit impulse and u(t) is called the unit step

function. The unit step function is defined as

A (1,t>o0) .
u(t) = o,t<03’

. . . s 1, t>a
thus the delayed unit step function is written as u(t-a) =lo. £t <af "
. 2

The Laplace transform of u(t) - u(t-a)

is given by

a
o]
[ [u(t) - u(t-2) ] -st 1 - %8
l e " dt = ——
a as ’
o
u(t) - u(t-a) 1 - ™28
Thus = ( and fom Laplace transform pairs. By taking

the limit of each expression as a = o, the first expression becomes the
unit impulse as previously defined, and the second becomes the Laplace

transform of the unit impulse:

-2
L[S(t)] = 5(s) =aLi_mo [l—f;se—- = Lim

so 8(s) = 1.



67

Thus the Laplace transform of a unit impulse is seen to be unity. The

Fourier tramnsform of the wnit impulse previously described is given by:

© : a 'a)t
[ - - o3 =J _
5(w) = Lim u(t) . u(t a)] e 9%t Lim =
a — O_m a—»o
(o]
r -j(l)'t a
1 e
= L?is P
a —0 J o

E-Jm

= Lim — L

a—o Je

vhich tends to the indeterminate form, 2. Application of L'Hospital's
o
Rule gives
3 -Jwe - s
8(w) = Lim [ B °] = Lim e Jm]
a=—o J a—o
= 1.

Thus the Fourier transform of the unit impulse is also unity.
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IX. APPEIDIX B

Let s(t) be a real valued function of the real valued variable t.
defining the function S(w) as
- o 40 oo
-just r :
S(w) = s(t)e at .—.J s(t)Cos(cnct)dt -3 J s(t)sin w tdt,

it is clear that S(-w) is given by

o +co -i-oo

S(~0) = ] s(t)e gt = J s(t)Cos(e t)at + 3 J s(+)Sin(e t)at.

-0

1

Now |S(w)] g[f s(t)Cos(w t)dt] [J s(t)Sln(a) t)dt]z}‘ ,

end, also,

1
+ Fl

2 [+ 2
|s(-w)] =g[j s(t)Cos(wct)dt] +[j' s(t)sm(wct)dt]}

Thus |S(-0)]| = |S(w)], so |s(w)]| is an even function.

Furthermore,

400 40
¢S(m)=tan-l { [ J s(t)Sin(aact)dt;] / [ J s(t)Cos(wct)di]} ,

and

| g (-0) = ‘can-l{ +[fms(t)s:1n(wct)dt;]/[fms(t)cOs(wct)dt]3

By
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=00

= - ta_n-lg _[fms(t)sﬁ(wct)dt] / [ fms(t)COs,(wct)dt]} ‘.

Thus ¢S(~w) = - ¢s(a)), SO ds(w) is an odd function.
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X. APPENDIX C
The easiest way to show that the functions
£(t) = Cos(a.)ct) and F(w) = = [8(w + wc) + 8(w - a)c)]

form a Fourier transform pair is to tske the inverse Fourier transform of

Flw).
1 f Fioty 1 . - jast
£(¢) = 3= | Fo)e =5 | nlslor) + s(0n)] e
-Jw +jo t
1

= ) [e + e

= Cos w tT.
C

Although it is also possible to proceed in the forward direction, exten-
sive argument is needed. The effort, although instructive, is not felt

to be justifisble in this discussion.
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XI. APPENDIX D

Consider any function, s(t), which is Fourier transformsble. If

<0
Fls(t)] 5-/ e-jw.ts(t)dt = S(w),

-

it is interesting to find Fls(-t)] in terms of S(w).

To do this, let -t = 7. Then ¢ = -T and dt = - dT. Also, when t = - ®,
T =+ », Furthermore, wvhen t = + ©, T = - », Thus, the Fourier transform

Fls(-t)], which is normally written as

o

f e"I%s(_t)at,

=

can now be written as

-0

V/F 3% 5(1)(-at)

400
+wA
= f ejw:s('r)d'r.
0

By making snother substitution, i.e., w= -W, Fls(-t)] becomes

4o
r .
J o™ (1)ar,

-0

" which is just the Fourier transform, S(W), of s(t). Thus,
Fls(-t)] = s(W) = s(-w).

Furthermore, since
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o Ao .
S(w) =f s(t)e“J“’tat =V/‘ s(t)Cos(wt)dt - ,jJ s(t)sin(wt)dt

and
) +00 400

40
S(-w) =J s(t)e+‘jwt =J s(t)Cos(wt )at + JJ s(t)sin(wt)dt,

=00

it is clear that S(w) and S(-w) are complex conjugates, i.e., S(-w) =
s*(w). Therefore, since Fls(-t)] is equal to S(-w), it is also equal to
S*¥(w). Clearly, then, F[s(-t)] and S*(w) form a Fourier transform pair.
Moreover, if one uses the notation s*(t) for F—l[S*(w)] , it becomes clear
that

s*(t) = s(-t).
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